储能系统的发展背景
微电网的定义:
微电网(Micro-Grid)也译为微网,是指由分布式电源、储能装置、能量转换装置、负荷、监控和保护装置等组成的小型发配电系统。微电网是一个能够实现自我控制、保护和管理的自治系统,既可以与外部电网并网运行,也可以孤立运行,旨在实现分布式电源的灵活、高效应用,解决数量庞大、形式多样的分布式电源并网问题。
微电网是相对传统大电网的一个概念,是指多个分布式电源及其相关负载按照一定的拓扑结构组成的网络,并通过静态开关关联至常规电网。开发和延伸微电网能够充分促进分布式电源与可再生能源的大规模接入,实现对负荷多种能源形式的高可靠供给,是实现主动式配电网的一种有效方式,使传统电网向智能电网过渡。
特点:微型、清洁、自治、友好
种类:交流、直流、混合
①电能存储的作用是什么?
→提高电网安全性(自然灾害、大面积停电)
→提高用户电能质量(电压、谐波、短时断电等)
→实现可再生能源大规模并网发电(间歇性、波动性)
最终提供可靠、高品质、清洁能源
②储能的需求点在哪里?
→电网发展面临诸多挑战,诸如:用电峰谷差逐渐增大、电网安全稳定性增高、电能质量要求更高、可再生能源大规模并网等
→可再生能源大规模发展导致用电稳定性、连续性和质量问题的浮出
→储能技术是构建分布式发电与智能电网的重要环节
③储能在电网中的作用是什么?
④储能的应用领域在哪里?
⑤储能的经济效益分析
增加储能系统能够有效提高新能源参与调峰调频能力,使新能源电站在无风/光情况下仍能够参与电网调节,提高电网运行可靠性,降低调频调峰成本。同时储能系统的增加能够有效缓解能源消纳问题,提高新能源利用率,提高新能源电站效益。同时大规模储能应用技术可进一步在低压配电网网络中做进一步推广应用,平抑新能源波动,改善并网点电能质量,带来良好的经济效益和社会效益。
储能系统相关产品介绍【一】
ANPCS储能变流器
ANPCS储能变流器型号及说明
储能变流器产品分为光储一体机和非光储一体机两大类
1、储能变流器
1.1 储能变流器的定义
电池储能作为大规模储能系统的重要形式之一,具有调峰、填谷、调频、调相、事故备用等多种用途。与常规电源相比,大规模储能电站能够适应负荷的快速变化,对提高电力系统安全稳定运行水平、电网供电质量和可靠性起到了重要作用,同时还可以优化电源结构,实现绿色环保,达到电力系统的总体节能降耗,提高总体的经济效益。
储能变流器(Power Conversion System,简称PCS)电化学储能系统中,连接于电池系统与电网(和/或负荷)之间的实现电能双向转换的装置,可控制蓄电池的充电和放电过程,进行交直流的变换,在无电网情况下可以直接为交流负荷供电。
PCS 由 DC/AC 双向变流器、控制单元等构成。PCS 控制器通过通讯接收后台控制指令,根据功率指令的符号及大小控制变流器对电池进行充电或放电,实现对电网有功功率及无功功率的调节。 同时PCS 可通过CAN接口与BMS通讯、干接点传输等方式,获取电池组状态信息,可实现对电池的保护性充放电,确保电池运行安全。
1.2 执行标准
《储能变流器检测技术规程》
《电池储能系统储能变流器技术规范》
GB/T 14549 电能质量 公用电网谐波
GB/T 15543 电能质量 三相电压不平衡
GB/T 15945 电能质量 电力系统频率偏差
GB/T 12325 电能质量 供电电压偏差
1.3 功能特点
储能变流器的主要功能是并网条件下,储能系统根据微网监控指令进行恒功率或恒流控制,给电池充电或放电,同时平滑风电、太阳能等波动性电源的输出;微网条件下,储能系统作为主电源提供微网的电压和频率支撑(V/F控制),微网中负荷以此电压和频率为基准工作。PCS采用双闭环控制和SPWM脉冲调制方法,能够精确快速地调节输出电压、频率、有功和无功功率。
1.4 产品优势
独特的模式切换平滑控制技术,保证并网-离网两种模式相互切换无冲击,确保变流器可靠运行。保证变流器并网时按要求增减有功功率、无功功率;独立运行时稳定负荷电压、频率。
1.5 应用场合
储能变流器广泛应用于电力系统、轨道交通、军工、石油机械、新能源汽车、风力发电、太阳能光伏等领域,在电网削峰填谷、平滑新能源波动,能量回收利用等场合实现能量双向流动,对电网电压频率主动支撑,提高供电电能质量。
1.6 快速选型计算方法
储能变流器配置一般根据微网内实际负荷及分布式发电能源容量来定。负荷分为重要性负荷(机房、办公、监控等负荷)、非重要性负荷(空调、照明、锅炉、门岗等负荷),负荷数据一般需要现场测量,一般测量工作日、节假日的分时数据,并节选四季典型时间的数据综合分析。
2、光储一体机
2.1 光储一体机装置介绍
光伏储能一体化能量转换装置(简称光储一体机)是一种应用于光伏、储能联合发电系统中实现直流/交流电能转换的设备,采用电力电子控制技术,可以协调控制光伏与储能电池的出力,平抑光伏电池的功率波动,并通过储能变流技术输出满足标准要求的交流电能向负载供电。设备具有工作模式动态可调,并离网模式切换,光伏能量最大功率跟踪,以及对储能蓄电池精细管理等功能和特点。采用光伏和储能各自通过DC/DC共直流母线汇集的方式,控制灵活,稳定性高,不仅可以实现光伏的MPPT控制,还可以适应不同类型的储能,充分发挥储能的调节范围,优化储能的充放电控制,提高能量的利用率。
2.2工作原理
光储一体化发电系统拓扑如图所示,系统可分为DC/DC变换侧、DC/AC变换侧以及直流母线三部分。其中DC/DC低压侧由三条独立支路组成,各支路均采用非隔离型双向DC/DC变换拓扑,可直接与光伏、储能单元相连并且根据需求进行恒压/恒流控制;DC/AC变换侧采用两电平三相半桥拓扑结构,在系统并网运行时交流侧与电网相连DC/AC进行功率控制,系统离网运行时进行恒压恒频控制,为负荷提供稳定的交流电源。光储一体化发电系统DC/DC变换高压侧与DC/AC变换直流侧通过直流母线相连,直流母线电压的稳定性直接影响系统的稳定性。
2.3产品功能