
石墨烯结构示意。来自美国哈佛大学网站

超轻的石墨烯材料。资料图片

三星公司展示的石墨烯柔性触摸屏。来自英国广播公司网站
6月21日,在香港举行的“石墨烯时代21世纪的奇迹材料”产业化全球高端论坛上,诺贝尔物理学奖得主康斯坦丁·诺沃肖洛夫爵士以一场妙趣横生的讲演,将听众带入一个玄妙神奇的科技世界,令人对未来美好生活充满遐想。
简单的实验
铅笔芯里诞生的诺奖
看过美剧《生活大爆炸》的观众,一定记得主人公“谢耳朵”钻研石墨烯,以致沉迷其中、不能自拔的情节。虽然该剧播出时,石墨烯研究尚未获诺贝尔奖,但已是学术界热点。
人们常见的石墨,是由一层层以蜂窝状有序排列的碳原子堆叠而成,层与层之间作用力较弱,可以相互剥离形成薄薄的石墨片。当石墨被剥离到单层、只有一个碳原子厚度时,所得到的石墨片就是石墨烯。
很长时间里,石墨烯一直被认为是假设性的结构,无法单独稳定存在。直至2004年,英国曼彻斯特大学物理学家安德烈·海姆和康斯坦丁·诺沃肖洛夫,成功地在实验中将石墨烯从石墨中分离,才证实了石墨烯可以单独存在。而这个惊世的开创性实验,却被诺沃肖洛夫评价为是“中学生都可以完成的实验”。
2004年,诺沃肖洛夫和他的导师海姆,以铅笔芯的主要成分——石墨为实验对象,成功通过机械微应力技术,将石墨分离成较小的碎片,最终得到了石墨烯这种新型超薄材料。当时,两人领导的研究小组利用透明胶带,将一张纸上的铅笔笔迹进行反复粘贴与撕开,使得石墨片的厚度逐渐减小,最终他们通过显微镜在大量的薄片中寻找到了厚度只有0.334纳米的石墨烯,而20万片石墨烯加在一起,才相当于一根头发丝的厚度。
6年后,海姆和诺沃肖洛夫获得了诺贝尔物理学奖。当时,诺贝尔奖委员会发言人激动地说,通常诺奖只奖励那些已经得到广泛实际应用的研究成果,但这一次,委员会强烈认为应当明确认可石墨烯这种有巨大潜能的新型材料。
由此,目前世界上最薄、最硬的材料——石墨烯逐渐走入大众的视野。
奇特的性能
比最好的钢坚固100倍
石墨烯的出现在科学界激起了巨大的波澜,它的出现有望在现代电子科技领域引发一轮革命。
对海姆和诺沃肖洛夫研究的石墨烯,当年的诺奖评审委员会将其称为“完美原子晶体”。
石墨烯是由碳原子紧密排列而成的蜂窝状结构,看上去就像是一张六边形网格构成的平面。这种独特的二维结构使其具有诸多优异的性能。
首先,石墨烯的结构非常稳定,迄今未发现有碳原子缺失的情况。在这种对称且完美的正六边形结构中,碳原子之间的连接极其柔韧。当受到外力时,碳原子面可以弯曲变形,而不必重新排列来适应外力,因而保证了自身结构的稳定性。测试发现,石墨烯是目前已知的强度最高的物质,其强度比世界上最好的钢还要高100倍。哥伦比亚大学物理学家做过的一个试验表明,如果物理学家们能制取出厚度相当于普通食品塑料袋的(厚度约100纳米)石墨烯,那么需要施加差不多两万牛的压力才能将其扯断。换句话说,如果用石墨烯制成包装袋,那么它几乎能承受一头亚洲象的重量。
其次,石墨烯稳定的正六边形结构使电子能够极为高效地迁移。由于电子和原子的碰撞,传统的半导体和导体(例如硅和铜)用热的形式释放了一些能量,目前一般的电脑芯片以这种方式浪费了72%—81%的电能,石墨烯则不同,它的电子能量不会被损耗,是目前室温下导电性最好的材料。
此外,石墨烯还具有较高的载流子迁移率,较高的室温热导率、超大的比表面积和高透明度等特性。
广阔的应用
太空电梯可能成为现实
2012年10月,诺沃肖罗夫与其他科学家在《自然》杂志上发表了题为《石墨烯路线图》的文章,描述了石墨烯在柔性电子(包括触摸屏、电子纸、可折叠有机二极管发光器件等)、光子器件、复合材料、能量存储、传感、生物医学等领域的多种应用。
被广泛用于触摸屏、电子纸和有机发光二极管上的透明导电膜,需要同时具备低表面电阻和高透光率。随着传统的氧化铟锡的成本不断升高,利用石墨烯制备导电薄膜为发展上述柔性器件提供了诱人的前景。科学家预计,首个石墨烯触摸屏将会在三到五年内上市,石墨烯电子纸样品到2015年应该可以研发成功。
一般认为,晶体管尺寸越小,性能越好。但当普遍采用的硅材料尺寸小于10纳米时,所制备的晶体管稳定性明显变差。尽管目前对于石墨烯能否取代硅仍存在争议,但石墨烯至少可以和硅互为补充,以混合电路的形式扩充芯片的功能。同时由于电子在石墨烯电路中的运行速度远高于硅,因此石墨烯也是未来开发高频电子器件的理想材料。
石墨烯具有大的比表面积,优异的电学和光学性能使其成为构筑高灵敏度传感器的理想材料,可用于DNA测序、磁场检测、流速监测和应变测量等。应变测量可能是其中最具竞争力的应用方向。因为石墨烯是目前唯一可以被拉伸达20%的晶体,用石墨烯制备应变测量仪,可显著提高仪器的工作范围。
超级电容器和锂离子电池也是石墨烯重要的应用领域。超级电容器是一个高效存储和传递能量的体系,石墨烯拥有大的比表面积、规范的多孔结构、高的电导率和热稳定性,使其成为最有潜力的电极材料。用石墨烯制备锂离子电池,可以在增加电极储能的同时,减少锂离子的扩散距离,有效提高锂电池的充放电效率和循环稳定性。
中国科研人员发现细菌的细胞在石墨烯上无法生长,而人类细胞却不会受损。利用这一点石墨烯可以用来做绷带,食品包装甚至抗菌T恤。根据其轻薄、坚固的特性,人们不仅可以用其制造出坚韧的防弹衣、超轻型飞机材料,甚至能让科学家梦寐以求的2.3万英里长太空电梯成为现实。
待破的瓶颈
各种制备方法均不完美
尽管石墨烯在众多领域拥有光明的应用前景,但实现这些应用的前提是发展大规模、低成本、大面积、结构与性能可调控的制备技术。
在金属表面催化生长石墨烯,再把它转移到适合的基底上,就好比在一个足球场上铺一层薄薄的保鲜膜,想让它平平整整且完好无损,难度很大。目前,世界上大约研究出五六种石墨烯制备方法,但都不完美。
微机械剥离法可以制备出高质量石墨烯,但存在产率低和成本高的不足,无法满足工业化和规模化生产要求,目前只能作为实验室小规模制备;化学气相沉积法可以制备出高质量大面积的石墨烯,但成本较高,工艺复杂;氧化还原法工艺较为简单,但大量制备容易带来废液污染;溶剂剥离法可以制备高质量的石墨烯,但是产率很低;溶剂热法解决了规模化制备石墨烯的问题,但也带来了电导率很低的负面影响等等。
作为碳纳米材料家族的明星成员,碳纳米管在出现伊始,也凭借其特殊的结构与优异的光电性质,引起了社会各界的广泛重视。但十多年过去了,碳纳米管在工业中的应用远不及人们当初的期望。究其原因,是在大规模、低成本、可控制备方面仍存在较大的困难,这严重制约了碳纳米管的实际应用。
石墨烯在光电性质及应用上与碳纳米管十分相似,碳纳米管的性质与应用研究为石墨烯研究提供了很好的基础。同样碳纳米管在走向真正工业应用中所遇到的瓶颈,也很有可能会发生在石墨烯身上。
因此,在看到石墨烯光明的应用前景的同时,也应对制备工艺提起足够的重视。