中国储能网欢迎您!
当前位置: 首页 >并网调度>构网型储能技术 返回

大连理工大学团队高性能锂电池储能取得新进展

作者:李祥村 来源:大工新闻网 发布时间:2019-10-23 浏览:

中国储能网讯:锂硫电池由于具有理论容量高(1675 mA h g-1)、能量密度大(2600 Wh kg-1)、硫资源丰富等特点,被广泛地认为是未来大规模储能领域应用发展的方向。其正极材料的孔结构设计对于提高电解液渗透速率和载量硫、抑制多硫化物(LiPS)穿梭效应、实现具有高能量密度的Li-S电池的实际应用至关重要。

近日,大连理工大学膜科学与技术团队贺高红教授、李祥村副教授提出相转化法可放大制备具有柔性的三层结构多孔C/SiO2膜。作为一种多功能且无金属集流体的正极,C/SiO2膜的分级大孔可以作为理想的硫载体,以减轻硫的体积膨胀效应。此外,互连的导电网络可以加快电子传输,提高反应动力学。嵌入的极性纳米SiO2颗粒对LiPS具有很强的化学吸附能力,有效地消除了穿梭效应。C/SiO2膜正极中的硫含量可达2.8mg cm-2,面容量达1.6mAh cm-2(ACS Nano,2019, 135, 5900),拓展制备不同功能颗粒改性的复合膜材料,提高LiPS的化学吸附能力,抑制穿梭效应,提高电池循环稳定性(Chem. Eng. J., 2019.122858)。

图1. (a)相转化法制备具有有序多孔结构的一体化膜电极材料,(b, c)膜电极材料具有高载硫性能(> 3 mg cm-2), (d, e)载硫膜电极可以直接用作锂硫电池正极,和传统方法相比,节省了Al箔、导电碳粉末、粘结剂,从而有效提高了电池的能量密度,(f)电极膜孔的有序通道极大提高了离子在膜电极内的传递速率。

进一步在相转化过程中加入Fe3+,加速溶剂\非溶剂相分离,诱导膜孔的有序化排列,提高离子在电极膜内的传递速率(Chem. Eng. J., 2019, 368, 310),提高锂硫电池的倍率性能和循环稳定性,研究结果以封面形式发表(J. Mater. Chem. A,2019,7, 20614)。

图2.膜孔有序化排列,提高离子在电极膜内的传递速率,提高锂硫电池的倍率性能和循环稳定性(两个纽扣电池串联,点亮> 40 LED灯,> 2h)

为提高膜电极内电池内动力学反应速率,在多孔空心碳球的限域反应器中合成Pt@Ni核壳材料,双金属不仅通过降低反应能垒,加速电子转移从而促进硫化锂分解转化,还增强了对多硫化物的亲和吸附作用,实现了具有高容量和循环稳定性的锂硫电池。同时该研究还深入探究了双金属在锂硫电池中的协同机理,并提供了相关的证明,为今后电催化在锂硫电池中的应用发展提供了借鉴,内容以内封面的形式发表(Small2019, 15, 1902431)。以上研究被邀请撰写关于电极材料制备及储能领域的综述性论文(Small2019, 15, 1804737)。

图3.铂镍合金催化剂吸附性能及催化机理分析。(a)铂镍合金催化剂与多硫化物相互作用的DFT分子模拟;(b)基于DFT计算的催化剂与多硫化物间吸附能;(c)铂镍合金催化硫化锂分解的机理示意图;(d)基于分子前线轨道理论计算纯金属铂、镍及铂镍合金与反应物的HOMO-LUMO反应能垒差;(e)硫化锂在铂镍合金催化剂上的分解能垒。

分享到:

关键字:大连理工 锂电池 储能

中国储能网版权说明:

1、凡注明来源为“中国储能网:xxx(署名)”,除与中国储能网签署内容授权协议的网站外,未经本网授权,任何单位及个人不得转载、摘编或以其它方式使用上述作品。

2、凡本网注明“来源:xxx(非中国储能网)”的作品,均转载与其他媒体,目的在于传播更多信息,但并不代表中国储能网赞同其观点、立场或证实其描述。其他媒体如需转载,请与稿件来源方联系,如产生任何版权问题与本网无关。

3、如因作品内容、版权以及引用的图片(或配图)内容仅供参考,如有涉及版权问题,可联系我们直接删除处理。请在30日内进行。

4、有关作品版权事宜请联系:13661266197、 邮箱:ly83518@126.com